5 years ago

Epoxy and Oxidoannulene Oxidation Mechanisms of Fused-Pentagon Chlorofullerenes: Oxides Linked by a Pirouette-Type Transition State

Epoxy and Oxidoannulene Oxidation Mechanisms of Fused-Pentagon Chlorofullerenes: Oxides Linked by a Pirouette-Type Transition State
Shigeru Nagase, Xiang Zhao, Ling He, Jia-Jia Zheng, Qiao-Zhi Li
Recently, the oxidative functionalization of double-fused-pentagon (DFP)-containing chlorofullerenes #271C50Cl10 and #913C56Cl10 was carried out, resulting in two monoepoxides with the oxygen atom added at the ortho site of pentalene on the DFP moiety. To uncover the reactivity of isolated-pentagon-rule violating fullerenes upon oxidation, two possible formation processes (ozone molecule and oxygen radical served as oxidation reagents) of these two oxides were systematically investigated through density functional theory calculations. For the ozone oxidation, two possible pathways were explored, and the results indicate that the biradical mechanism Pathos-RACDP is kinetically more favorable than Pathos-RABP, where R, A, and P represent reactants, ozonide intermediates, and oxidation products and B, C, and D represent another three oxygen-containing intermediates. The products obtained by ozone oxidation ([6,6]-55-closed epoxides P–C3–C29 for #271C50Cl10 and P–C42–C43 for #913C56Cl10 with oxygen atom added at the shortest and highest HOMO-contribution bonds) are consistent with experimental observations. However, the oxygen radical additions on these two chlorofullerenes favor generation of the [5,6]-66-open oxidoannulene adducts P–C3–C2 and P–C42–C54, respectively. Subsequent analyses of their geometrical features and structural stabilities suggest that these two oxidoannulene adducts are energetically unfavorable and could be converted to more stable epoxides mentioned above by undergoing a pirouette-type transition state. In these two diverse oxidation procedures, the favorable C–C bonds for ozone attacking and C atoms for oxygen-adsorption are rationalized in terms of their bond lengths and HOMO contributions as well as pyramidalization angles.

Publisher URL: http://dx.doi.org/10.1021/acs.joc.7b00408

DOI: 10.1021/acs.joc.7b00408

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.