5 years ago

Next-Generation Nanoporous Materials: Progress and Prospects for Reverse Osmosis and Nanofiltration

Next-Generation Nanoporous Materials: Progress and Prospects for Reverse Osmosis and Nanofiltration
Matthew Reichert, Jessica Y. Shu, Derek M. Stevens, Abhishek Roy
Reverse osmosis and nanofiltration are highly adopted, growing technologies that are used to remove salts and other small molecules in water treatment. Both of these technologies primarily use cross-linked polyamide membranes to achieve the desired separation. Many novel nanoporous materials are being developed as alternatives or complements to polyamides, including graphene, graphene oxide, block copolymers, liquid crystals, aquaporins, and other biologically inspired molecular channels. This article evaluates each of these technologies by (i) reviewing the current progress in each area, (ii) identifying key needs for immediate research, and (iii) evaluating considerations for commercial development. The economic benefits of these technologies in reverse osmosis applications are further reviewed to help frame the expected commercial value proposition.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b02411

DOI: 10.1021/acs.iecr.7b02411

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.