3 years ago

Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
Ahmet Avsar, Barbaros Özyilmaz, Marcin Kurpas, Martin Gmitra, Jun Y. Tan, Takashi Taniguchi, Jaroslav Fabian, Kenji Watanabe
Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron’s spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott–Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

Publisher URL: http://dx.doi.org/10.1038/nphys4141

DOI: 10.1038/nphys4141

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.