5 years ago

Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO42−/SnO2-kaoline and E. coli CCZU-T15 cells in toluene–water media

Chemical-enzymatic conversion of corncob-derived xylose to furfuralcohol by the tandem catalysis with SO42−/SnO2-kaoline and E. coli CCZU-T15 cells in toluene–water media
One-pot synthesis of furfuralcohol from corncob-derived xylose was attempted by the tandem catalysis with solid acid SO4 2−/SnO2-kaoline and recombination Escherichia coli CCZU-T15 whole-cells in the toluene-water media. Using SO4 2−/SnO2-kaoline (3.5wt%) as catalyst, the furfural yield of 74.3% was obtained from corncob-derived xylose in the toluene-water (1:2, v:v) containing 10mM OP-10 at 170°C for 30min. After furfural liquor was mixed with corncob-hydrolysate from the enzymatic hydrolysis of oxalic acid-pretreated corncob residue, furfural (50.5mM) could be completely biotransformed to furfuralcohol with Escherichia coli CCZU-T15 whole-cells harboring an NADH-dependent reductase (ClCR) in the toluene-water (1:3, v:v) containing 12.5mM OP-10 and 1.6mM glucose/mM furfural at 30°C and pH 6.5. Furfuralcohol was obtained at 13.0% yield based on starting material corncob (100% furfuralcohol yield for bioreduction of furfural step). Clearly, this one-pot synthesis of furfuralcohol strategy shows high potential application for the effective utilization of corncob.

Publisher URL: www.sciencedirect.com/science

DOI: S096085241731533X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.