3 years ago

Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria

Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria
Select lactic acid bacteria (LAB); Lactobacillus plantarum, L. casei and L. acidophilus were targeted for enhancing bioactives and flavor volatiles of cashew apple juice (CAJ) that is an underutilized byproduct from cashew nut processing in Tropical countries. Results indicated the vitamin C and phenolic metabolites such as condensed tannin can be increased at certain stages such as at 12h over the 48h fermentation period. Whereas antioxidant activity based on DPPH and ABTS radical scavenging activity generally decreased from initial unfermented stage range of (75%–95%) to consistently in the 50% range by 48h of fermentation and this follows the decrease in viable counts. The fermentation process increased the condensed tannin contents in CAJ whereas hydrolysable tannins decreased. In this study the changes in flavor volatile types were also analyzed over the course of CAJ fermentation. The results indicated that LAB changed the flavor profiles of fermented CAJ and overall the fruity odor decreased, but the whiskey and acid odor increased. These results provide the foundation to further target the functional benefits of LAB-induced fermented CAJ for further human, animal, and plant health applications.

Publisher URL: www.sciencedirect.com/science

DOI: S1359511317302301

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.