3 years ago

Molecular mapping and candidate gene analysis of a new epicuticular wax locus in sorghum ( Sorghum bicolor L. Moench)

G. Anurag Uttam, R. Madhusudhana, Y. Venkateswara Rao, M. Praveen, Vilas A. Tonapi

Abstract

Key message

A new epicuticular wax (bloom) locus has been identified and fine mapped to the 207.89 kb genomic region on chromosome 1. A putative candidate gene, Sobic.001G269200, annotated as GDSL-like lipase/acylhydrolase, is proposed as the most probable candidate gene involved in bloom synthesis/deposition.

Abstract

Deposition of epicuticular wax on plant aerial surface is one strategy that plants adapt to reduce non-transpiration water loss. Epicuticular wax (bloom)-less mutants in sorghum with their glossy phenotypes exhibit changes in the accumulation of epicuticular wax on leaf and culm surfaces. We report molecular mapping of a new sorghum locus, bloomless mutant (bm39), involved in epicuticular wax biosynthesis in sorghum. Inheritance studies involving a profusely bloom parent (BTx623) and a spontaneous bloomless mutant (RS647) indicated that the parents differed in a single gene for bloom synthesis. Bloomless was recessive to bloom deposition. Genetic mapping involving F2 and F7 mapping populations in diverse genetic backgrounds (BTx623 × RS647; 296A × RS647 and 27A × RS647) identified and validated the map location of bm39 to a region of 207.89 kb on chromosome 1. SSR markers, Sblm13 and Sblm16, flanked the bm39 locus to a map interval of 0.3 cM on either side. Nine candidate genes were identified, of which Sobic.001G269200 annotated for GDSL-like lipase/acylhydrolase is the most likely gene associated with epicuticular wax deposition. Gene expression analysis in parents, isogenic lines and sets of near isogenic lines also confirmed the reduced expression of the putative candidate gene. The study opens possibilities for a detailed molecular analysis of the gene, its role in epicuticular wax synthesis and deposition, and may help to understand its function in moisture stress tolerance and insect and pathogen resistance in sorghum.

Publisher URL: https://link.springer.com/article/10.1007/s00122-017-2945-x

DOI: 10.1007/s00122-017-2945-x

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.