5 years ago

A conserved homo-dimerization interface in human IFIT1 provides insights into IFIT interactome assembly

B., P. D., Pelletier, Cencic, Martinez-Montero, Damha, R., S., Nagar, Y. M., Abbas, J., M. J., Pawelek
The Interferon Induced Proteins with Tetratricopeptide Repeats (IFITs) are a group of potently expressed Interferon Stimulated Genes that mediate antiviral innate immunity. Previous studies have revealed that most IFITs partake in higher order structures, potentially as part of an IFIT interactome that results in viral inhibition. Recent crystal structures of a mutated, monomeric form of IFIT1 revealed the molecular basis of how it recognizes non-self, capped viral mRNAs to selectively inhibit their translation. However, wild-type IFIT1 forms dimers in solution and the role of dimerization was not examined in detail. Here we present a structural and biochemical analysis of wild-type IFIT1 in complex with capped and uncapped RNA. Wild-type IFIT1 forms an antiparallel, elongated dimer that is in stark contrast to the domain-swapped, parallel dimer found in IFIT2. Dimerization takes place through a small, C-terminal interface that is evolutionarily conserved in IFIT1 and IFIT1B proteins. The interface is modular and can be grafted onto IFIT5, which is natively monomeric, to induce dimerization. Mutational analysis of this interface showed that homo-dimerization is not required for full RNA binding or translational inhibition by IFIT1. Sedimentation velocity analytical ultracentrifugation measurements demonstrated a reversible monomer-dimer equilibrium, suggesting that dimerization is of low affinity and could play a role under physiological concentrations, possibly in regulating IFIT interactome assembly. Finally, conformational changes in IFIT1 that occur upon RNA binding provide insight into how RNA enters its binding site in solution.

Publisher URL: http://biorxiv.org/cgi/content/short/152850v1

DOI: 10.1101/152850

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.