3 years ago

Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography

Eriko Maeda, Issei Sato, Takeharu Yoshikawa, Mitsutaka Nemoto, Naoto Hayashi, Soichiro Miki, Takahiro Nakao, Yukihiro Nomura, Osamu Abe, Shouhei Hanaoka
Background The usefulness of computer-assisted detection (CAD) for detecting cerebral aneurysms has been reported; therefore, the improved performance of CAD will help to detect cerebral aneurysms. Purpose To develop a CAD system for intracranial aneurysms on unenhanced magnetic resonance angiography (MRA) images based on a deep convolutional neural network (CNN) and a maximum intensity projection (MIP) algorithm, and to demonstrate the usefulness of the system by training and evaluating it using a large dataset. Study Type Retrospective study. Subjects There were 450 cases with intracranial aneurysms. The diagnoses of brain aneurysms were made on the basis of MRA, which was performed as part of a brain screening program. Field Strength/Sequence Noncontrast-enhanced 3D time-of-flight (TOF) MRA on 3T MR scanners. Assessment In our CAD, we used a CNN classifier that predicts whether each voxel is inside or outside aneurysms by inputting MIP images generated from a volume of interest (VOI) around the voxel. The CNN was trained in advance using manually inputted labels. We evaluated our method using 450 cases with intracranial aneurysms, 300 of which were used for training, 50 for parameter tuning, and 100 for the final evaluation. Statistical Tests Free-response receiver operating characteristic (FROC) analysis. Results Our CAD system detected 94.2% (98/104) of aneurysms with 2.9 false positives per case (FPs/case). At a sensitivity of 70%, the number of FPs/case was 0.26. Data Conclusion We showed that the combination of a CNN and an MIP algorithm is useful for the detection of intracranial aneurysms. Level of Evidence: 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jmri.25842

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.