5 years ago

The performance of a new local false discovery rate method on tests of association between coronary artery disease (CAD) and genome-wide genetic variants

Shuyan Mei, Celia M. T. Greenwood, David R. Bickel, Ali Karimnezhad, Marie Forest

by Shuyan Mei, Ali Karimnezhad, Marie Forest, David R. Bickel, Celia M. T. Greenwood

The maximum entropy (ME) method is a recently-developed approach for estimating local false discovery rates (LFDR) that incorporates external information allowing assignment of a subset of tests to a category with a different prior probability of following the null hypothesis. Using this ME method, we have reanalyzed the findings from a recent large genome-wide association study of coronary artery disease (CAD), incorporating biologic annotations. Our revised LFDR estimates show many large reductions in LFDR, particularly among the genetic variants belonging to annotation categories that were known to be of particular interest for CAD. However, among SNPs with rare minor allele frequencies, the reductions in LFDR were modest in size.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0185174

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.