3 years ago

Kinetic and mechanistic study of the synthesis of ionone isomers from pseudoionone on Brønsted acid solids

Kinetic and mechanistic study of the synthesis of ionone isomers from pseudoionone on Brønsted acid solids
The kinetics of the liquid-phase synthesis of α-, β- and γ-ionones from pseudoionone was studied on Brønsted acid solids. Four silica-supported tungstophosphoric acid catalysts containing different heteropolyacid loadings, as well as a silica-supported triflic acid sample and a commercial resin (Amberlyst 35W) were tested in a batch reactor at 343–383K under autogenous pressure. The final composition of the ionone isomer mixture depended on the catalyst acidic properties and operational conditions. The reaction pathways leading to the three ionone isomers were elucidated by postulating a heterogeneous Langmuir-Hinshelwood-Hougen-Watson (LHHW) kinetic model. First order rate expressions, participation of a single Brønsted acid site in each reaction step and a cationic cyclic intermediate shared by the three ionone isomers were the main model assumptions. It was found that α-, β- and γ-ionones form directly from pseudoionone by cyclization. However, the final concentration of α- and β-ionones is enhanced in consecutive pathways involving the isomerization of γ-ionone. The relative importance of the isomerization steps and the selective formation of α- or β-ionone depend on the Brønsted acid site strength and reaction temperature.

Publisher URL: www.sciencedirect.com/science

DOI: S0920586117303012

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.