3 years ago

g-C3N4-Based Heterostructured Photocatalysts

g-C3N4-Based Heterostructured Photocatalysts
Junwei Fu, Bei Cheng, Chuanjia Jiang, Jiaguo Yu
Photocatalysis is considered as one of the promising routes to solve the energy and environmental crises by utilizing solar energy. Graphitic carbon nitride (g-C3N4) has attracted worldwide attention due to its visible-light activity, facile synthesis from low-cost materials, chemical stability, and unique layered structure. However, the pure g-C3N4 photocatalyst still suffers from its low separation efficiency of photogenerated charge carriers, which results in unsatisfactory photocatalytic activity. Recently, g-C3N4-based heterostructures have become research hotspots for their greatly enhanced charge carrier separation efficiency and photocatalytic performance. According to the different transfer mechanisms of photogenerated charge carriers between g-C3N4 and the coupled components, the g-C3N4-based heterostructured photocatalysts can be divided into the following categories: g-C3N4-based conventional type II heterojunction, g-C3N4-based Z-scheme heterojunction, g-C3N4-based p–n heterojunction, g-C3N4/metal heterostructure, and g-C3N4/carbon heterostructure. This review summarizes the recent significant progress on the design of g-C3N4-based heterostructured photocatalysts and their special separation/transfer mechanisms of photogenerated charge carriers. Moreover, their applications in environmental and energy fields, e.g., water splitting, carbon dioxide reduction, and degradation of pollutants, are also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced g-C3N4-based heterostructured photocatalysts are presented. g-C3N4-based heterostructured photocatalysts have become research hotspots for their greatly enhanced charge carrier separation efficiency and photocatalytic performance. g-C3N4-based conventional type II heterojunction, g-C3N4-based Z-scheme heterojunction, g-C3N4-based p–n heterojunction, g-C3N4/metal heterostructure, and g-C3N4/carbon heterostructure have been widely reported in recent years. This review summarizes the design principles, preparation methods, charge transfer mechanism, and photocatalytic applications of these g-C3N4-based heterostructured photocatalysts.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/aenm.201701503

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.