3 years ago

Applying artificial intelligence to disease staging: Deep learning for improved staging of diabetic retinopathy

Yuji Inoue, Hidenori Takahashi, Yusuke Arai, Hironobu Tampo, Hidetoshi Kawashima

by Hidenori Takahashi, Hironobu Tampo, Yusuke Arai, Yuji Inoue, Hidetoshi Kawashima

Purpose

Disease staging involves the assessment of disease severity or progression and is used for treatment selection. In diabetic retinopathy, disease staging using a wide area is more desirable than that using a limited area. We investigated if deep learning artificial intelligence (AI) could be used to grade diabetic retinopathy and determine treatment and prognosis.

Methods

The retrospective study analyzed 9,939 posterior pole photographs of 2,740 patients with diabetes. Nonmydriatic 45° field color fundus photographs were taken of four fields in each eye annually at Jichi Medical University between May 2011 and June 2015. A modified fully randomly initialized GoogLeNet deep learning neural network was trained on 95% of the photographs using manual modified Davis grading of three additional adjacent photographs. We graded 4,709 of the 9,939 posterior pole fundus photographs using real prognoses. In addition, 95% of the photographs were learned by the modified GoogLeNet. Main outcome measures were prevalence and bias-adjusted Fleiss’ kappa (PABAK) of AI staging of the remaining 5% of the photographs.

Results

The PABAK to modified Davis grading was 0.64 (accuracy, 81%; correct answer in 402 of 496 photographs). The PABAK to real prognosis grading was 0.37 (accuracy, 96%).

Conclusions

We propose a novel AI disease-staging system for grading diabetic retinopathy that involves a retinal area not typically visualized on fundoscopy and another AI that directly suggests treatments and determines prognoses.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0179790

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.