5 years ago

Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast

Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast
Microbial synthesis of medium chain aliphatic hydrocarbons, attractive drop-in molecules to gasoline and jet fuels, is a promising way to reduce our reliance on petroleum-based fuels. In this study, we enabled the synthesis of straight chain hydrocarbons (C7–C13) by yeast Saccharomyces cerevisiae through engineering fatty acid synthases to control the chain length of fatty acids and introducing heterologous pathways for alkane or 1-alkene synthesis. We carried out enzyme engineering/screening of the fatty aldehyde deformylating oxygenase (ADO), and compartmentalization of the alkane biosynthesis pathway into peroxisomes to improve alkane production. The two-step synthesis of alkanes was found to be inefficient due to the formation of alcohols derived from aldehyde intermediates. Alternatively, the drain of aldehyde intermediates could be circumvented by introducing a one-step decarboxylation of fatty acids to 1-alkenes, which could be synthesized at a level of 3mg/L, 25-fold higher than that of alkanes produced via aldehydes.

Publisher URL: www.sciencedirect.com/science

DOI: S109671761730126X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.