5 years ago

T3SS effector VopL inhibits the host ROS response, promoting the intracellular survival of <i>Vibrio parahaemolyticus</i>

Kim Orth, Dor Salomon, Marcela de Souza Santos

by Marcela de Souza Santos, Dor Salomon, Kim Orth

The production of antimicrobial reactive oxygen species by the nicotinamide dinucleotide phosphate (NADPH) oxidase complex is an important mechanism for control of invading pathogens. Herein, we show that the gastrointestinal pathogen Vibrio parahaemolyticus counteracts reactive oxygen species (ROS) production using the Type III Secretion System 2 (T3SS2) effector VopL. In the absence of VopL, intracellular V. parahaemolyticus undergoes ROS-dependent filamentation, with concurrent limited growth. During infection, VopL assembles actin into non-functional filaments resulting in a dysfunctional actin cytoskeleton that can no longer mediate the assembly of the NADPH oxidase at the cell membrane, thereby limiting ROS production. This is the first example of how a T3SS2 effector contributes to the intracellular survival of V. parahaemolyticus, supporting the establishment of a protective intracellular replicative niche.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.ppat.1006438

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.