3 years ago

Primatologist: A modular segmentation pipeline for macaque brain morphometry

Because they bridge the genetic gap between rodents and humans, non-human primates (NHPs) play a major role in therapy development and evaluation for neurological disorders. However, translational research success from NHPs to patients requires an accurate phenotyping of the models. In patients, magnetic resonance imaging (MRI) combined with automated segmentation methods has offered the unique opportunity to assess in vivo brain morphological changes. Meanwhile, specific challenges caused by brain size and high field contrasts make existing algorithms hard to use routinely in NHPs. To tackle this issue, we propose a complete pipeline, Primatologist, for multi-region segmentation. Tissue segmentation is based on a modular statistical model that includes random field regularization, bias correction and denoising and is optimized by expectation-maximization. To deal with the broad variety of structures with different relaxing times at 7 T, images are segmented into 17 anatomical classes, including subcortical regions. Pre-processing steps insure a good initialization of the parameters and thus the robustness of the pipeline. It is validated on 10 T2-weighted MRIs of healthy macaque brains. Classification scores are compared with those of a non-linear atlas registration, and the impact of each module on classification scores is thoroughly evaluated.

Publisher URL: www.sciencedirect.com/science

DOI: S1053811917307450

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.