4 years ago

Localized synergies between heat waves and urban heat islands: Implications on human thermal comfort and urban heat management

Bao-Jie He, Junsong Wang, Huimin Liu, Giulia Ulpiani

Heat waves (HWs) and urban heat islands (UHIs) can potentially interact. The mechanisms behind their synergy are not fully disclosed. Starting from the localized UHI phenomenon, this study aims i) to reveal their associated impacts on human thermal comfort through three different definitions of HW events, based on air temperature (airT), wet-bulb globe temperature (WBGT) and human-perceived temperature (AppT) respectively, and ii) to understand the role of air moisture and wind. The analysis was conducted in four districts (NH, JD, MH and XJH) with different urban development patterns and geographic conditions, in the megacity of Shanghai with a subtropical humid climate.

Results evidenced the localized interplay between HWs and UHIs. The results indicate that less urbanized districts were generally more sensitive to the synergies. JD district recorded the highest urban heat island intensity (UHII) amplification, regardless of the specific HW definition. Notably, during AppT-HWs, the increment was observed in terms of maximum (1.3 °C), daily average (0.8 °C), diurnal (0.4 °C) and nocturnal UHII (1.0 °C). Nevertheless, localized synergies between HWs and UHIs at different stations also exhibited some commonalities. Under airT-HW, the UHII was amplified throughout the day at all stations. Under WBGT-HW, diurnal UHII (especially at 11:00-17:00 LST) was consistently amplified at all stations. Under AppT-HW conditions, the nocturnal UHII was slightly amplified at all stations. Air moisture and wind alleviated the synergistic heat exacerbation to the benefit of thermal comfort. The extent depended on geographic condition, diurnal and nocturnal scenarios, temperature type and HW/normal conditions. Stronger HW-UHI synergies indicate the necessity to develop specific urban heat emergency response plans, able to capture and intervene on the underlying mechanisms. This study paves to way to their identification.

Publisher URL: https://www.sciencedirect.com/science/article/pii/S001393512031481X

DOI: 10.1016/j.envres.2020.110584

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.