3 years ago

Stress myocardial blood flow correlates with ventricular function and synchrony better than myocardial perfusion reserve: A Nitrogen-13 ammonia PET study

Antonio Jordán-Ríos, Johannes L. Hillege, Myriam M. Martínez-Aguilar, Rudi A. Dierckx, Riemer H. Slart, Niek Prakken, Clark J. Zeebregts, Luis Eduardo Juárez-Orozco, Erick Alexanderson, Rene A. Tio, Ana Gabriela Ayala-German, Hendrikus H. Boersma



Cardiac PET quantifies stress myocardial blood flow (MBF) and perfusion reserve (MPR), while ECG-gated datasets can measure components of ventricular function simultaneously. Stress MBF seems to outperform MPR in the detection of significant CAD. However, it is uncertain which perfusion measurement is more related to ventricular function. We hypothesized that stress MBF correlates with ventricular function better than MPR in patients studied for suspected myocardial ischemia.


We studied 248 patients referred to a rest and adenosine-stress Nitrogen-13 ammonia PET. We performed a multivariate analysis using systolic function (left ventricular ejection fraction, LVEF), diastolic function (mean filling rate in diastole, MFR/3), and synchrony (Entropy) as the outcome variables, and stress MBF, MPR, and relevant covariates as the predictors. Secondarily, we repeated the analysis for the subgroup of patients with and without a previous myocardial infarction (MI).


166 male and 82 female patients (mean age 63 ± 11 and 67 ± 11 year, respectively) were included. 60% of the patients presented hypertension, 57% dyslipidemia, 21% type 2 diabetes mellitus, 45% smoking, and 34.7% a previous MI. Mean stress MBF was 1.99 ± 0.75 mL/g/min, MPR = 2.55 ± 0.89, LVEF = 61.6 ± 15%, MFR/3 = 1.12 ± 0.38 EDV/s, and Entropy = 45.6 ± 11.3%. There was a significant correlation between stress MBF (P < .001) and ventricular function. This was stronger than the one for MPR (P = .063). Sex, age, diabetes, and extent of previous MI were also significant predictors. Results were similar for the analyses of the 2 subgroups.


Stress MBF is better correlated with ventricular function than MPR, as evaluated by Nitrogen-13 ammonia PET, independently from other relevant cardiovascular risk factors and clinical covariates. This relationship between coronary vasodilatory capacity and ventricular function is sustained across groups with and without a previous MI.

Publisher URL: https://link.springer.com/article/10.1007/s12350-016-0669-y

DOI: 10.1007/s12350-016-0669-y

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.