3 years ago

Deformable Part Networks.

Alan Sullivan, Rongmei Lin, Ziming Zhang

In this paper we propose novel Deformable Part Networks (DPNs) to learn {\em pose-invariant} representations for 2D object recognition. In contrast to the state-of-the-art pose-aware networks such as CapsNet \cite{sabour2017dynamic} and STN \cite{jaderberg2015spatial}, DPNs can be naturally {\em interpreted} as an efficient solver for a challenging detection problem, namely Localized Deformable Part Models (LDPMs) where localization is introduced to DPMs as another latent variable for searching for the best poses of objects over all pixels and (predefined) scales. In particular we construct DPNs as sequences of such LDPM units to model the semantic and spatial relations among the deformable parts as hierarchical composition and spatial parsing trees. Empirically our 17-layer DPN can outperform both CapsNets and STNs significantly on affNIST \cite{sabour2017dynamic}, for instance, by 19.19\% and 12.75\%, respectively, with better generalization and better tolerance to affine transformations.

Publisher URL: http://arxiv.org/abs/1805.08808

DOI: arXiv:1805.08808v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.