3 years ago

Naive Bayesian Learning in Social Networks.

Jerry Anunrojwong, Nat Sothanaphan

The DeGroot model of naive social learning assumes that agents only communicate scalar opinions. In practice, agents communicate not only their opinions, but their confidence in such opinions. We propose a model that captures this aspect of communication by incorporating signal informativeness into the naive social learning scenario. Our proposed model captures aspects of both Bayesian and naive learning. Agents in our model combine their neighbors' beliefs using Bayes' rule, but the agents naively assume that their neighbors' beliefs are independent. Depending on the initial beliefs, agents in our model may not reach a consensus, but we show that the agents will reach a consensus under mild continuity and boundedness assumptions on initial beliefs. This eventual consensus can be explicitly computed in terms of each agent's centrality and signal informativeness, allowing joint effects to be precisely understood. We apply our theory to adoption of new technology. In contrast to Banerjee et al. [2018], we show that information about a new technology can be seeded initially in a tightly clustered group without information loss, but only if agents can expressively communicate their beliefs.

Publisher URL: http://arxiv.org/abs/1805.05878

DOI: arXiv:1805.05878v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.