3 years ago

Spring Land Surface and Subsurface Temperature Anomalies and Subsequent Downstream Late Spring‐Summer Droughts/Floods in North America and East Asia

Sea surface temperature (SST) variability has been shown to have predictive value for land precipitation, although SSTs are unable to fully predict intraseasonal to interannual hydrologic extremes. The possible remote effects of large‐scale land surface temperature (LST) and subsurface temperature (SUBT) anomalies in geographical areas upstream and closer to the areas of drought/flood have largely been ignored. Here evidence from climate observations and model simulations addresses these effects. Evaluation of observational data using Maximum Covariance Analysis identifies significant correlations between springtime 2‐m air temperature (T2 m) cold (warm) anomalies in both the western U.S. and the Tibetan Plateau and downstream drought (flood) events in late spring/summer. To support these observational findings, climate models are used in sensitivity studies, in which initial LST/SUBT anomaly is imposed to produce observed T2 m anomaly, to demonstrate a causal relationship for two important cases: between spring warm T2 m/LST/SUBT anomalies in western U.S. and the extraordinary 2015 flood in Southern Great Plains and adjacent regions and between spring cold T2 m/LST/SUBT anomalies in the Tibetan Plateau and the severe 2003 drought south of the Yangtze River region. The LST/SUBT downstream effects in North America are associated with a large‐scale atmospheric stationary wave extending eastward from the LST/SUBT anomaly region. The effects of SST in these cases are also tested and compared with the LST/SUBT effects. These results suggest that consideration of LST/SUBT anomalies has the potential to add value to intraseasonal prediction of dry and wet conditions, especially extreme drought/flood events. The results suggest the importance of developing land data and models capable of preserving observed soil memory.

Publisher URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2017JD028246

DOI: 10.1029/2017JD028246

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.