3 years ago

Dynamic Low-Stretch Trees via Dynamic Low-Diameter Decompositions.

Sebastian Krinninger, Gramoz Goranci

Spanning trees of low average stretch on the non-tree edges, as introduced by Alon et al. [SICOMP 1995], are a natural graph-theoretic object. In recent years, they have found significant applications in solvers for symmetric diagonally dominant (SDD) linear systems. In this work, we provide the first dynamic algorithm for maintaining such trees under edge insertions and deletions to the input graph. Our algorithm has update time $ n^{1/2 + o(1)} $ and the average stretch of the maintained tree is $ n^{o(1)} $, which matches the stretch in the seminal result of Alon et al.

Similar to Alon et al., our dynamic low-stretch tree algorithm employs a dynamic hierarchy of low-diameter decompositions (LDDs). As a major building block we use a dynamic LDD that we obtain by adapting the random-shift clustering of Miller et al. [SPAA 2013] to the dynamic setting. The major technical challenge in our approach is to control the propagation of updates within our hierarchy of LDDs. We believe that the dynamic random-shift clustering might be useful for independent applications. One of these potential applications follows from combining the dynamic clustering with the recent spanner construction of Elkin and Neiman [SODA 2017]. We obtain a fully dynamic algorithm for maintaining a spanner of stretch $ 2k - 1 $ and size $ O (n^{1 + 1/k} \log{n}) $ with amortized update time $ O (k \log^2 n) $ for any integer $ 2 \leq k \leq \log n $. Compared to the state-of-the art in this regime [Baswana et al. TALG '12], we improve upon the size of the spanner and the update time by a factor of $ k $.

Publisher URL: http://arxiv.org/abs/1804.04928

DOI: arXiv:1804.04928v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.