Decidable Logics Combining Word Equations, Regular Expressions and Length Constraints.
In this work, we consider the satisfiability problem in a logic that combines word equations over string variables denoting words of unbounded lengths, regular languages to which words belong and Presburger constraints on the length of words. We present a novel decision procedure over two decidable fragments that include quadratic word equations (i.e., each string variable occurs at most twice). The proposed procedure reduces the problem to solving the satisfiability in the Presburger arithmetic. The procedure combines two main components: (i) an algorithm to derive a complete set of all solutions of conjunctions of word equations and regular expressions; and (ii) two methods to precisely compute relational constraints over string lengths implied by the set of all solutions.We have implemented a prototype tool and evaluated it over a set of satisfiability problems in the logic. The experimental results show that the tool is effective and efficient.
Publisher URL: http://arxiv.org/abs/1805.09123
DOI: arXiv:1805.09123v1
Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.