3 years ago

Abstractive Text Classification Using Sequence-to-convolution Neural Networks.

Jihoon Yang, Taehoon Kim

We propose a new deep neural network model and its training scheme for text classification. Our model Sequence-to-convolution Neural Networks(Seq2CNN) consists of two blocks: Sequential Block that summarizes input texts and Convolution Block that receives summary of input and classifies it to a label. Seq2CNN is trained end-to-end to classify various-length texts without preprocessing inputs into fixed length. We also present Gradual Weight Shift(GWS) method that stabilizes training. GWS is applied to our model's loss function. We compared our model with word-based TextCNN trained with different data preprocessing methods. We obtained significant improvement in classification accuracy over word-based TextCNN without any ensemble or data augmentation.

Publisher URL: http://arxiv.org/abs/1805.07745

DOI: arXiv:1805.07745v3

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.