3 years ago

Single‐image Tomography: 3D Volumes from 2D Cranial X‐Rays

As many different 3D volumes could produce the same 2D x‐ray image, inverting this process is challenging. We show that recent deep learning‐based convolutional neural networks can solve this task. As the main challenge in learning is the sheer amount of data created when extending the 2D image into a 3D volume, we suggest firstly to learn a coarse, fixed‐resolution volume which is then fused in a second step with the input x‐ray into a high‐resolution volume. To train and validate our approach we introduce a new dataset that comprises of close to half a million computer‐simulated 2D x‐ray images of 3D volumes scanned from 175 mammalian species. Future applications of our approach include stereoscopic rendering of legacy x‐ray images, re‐rendering of x‐rays including changes of illumination, view pose or geometry. Our evaluation includes comparison to previous tomography work, previous learning methods using our data, a user study and application to a set of real x‐rays.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.