3 years ago

Improved Functional Mappings via Product Preservation

In this paper, we consider the problem of information transfer across shapes and propose an extension to the widely used functional map representation. Our main observation is that in addition to the vector space structure of the functional spaces, which has been heavily exploited in the functional map framework, the functional algebra (i.e., the ability to take pointwise products of functions) can significantly extend the power of this framework. Equipped with this observation, we show how to improve one of the key applications of functional maps, namely transferring real‐valued functions without conversion to point‐to‐point correspondences. We demonstrate through extensive experiments that by decomposing a given function into a linear combination consisting not only of basis functions but also of their pointwise products, both the representation power and the quality of the function transfer can be improved significantly. Our modification, while computationally simple, allows us to achieve higher transfer accuracy while keeping the size of the basis and the functional map fixed. We also analyze the computational complexity of optimally representing functions through linear combinations of products in a given basis and prove NP‐completeness in some general cases. Finally, we argue that the use of function products can have a wide‐reaching effect in extending the power of functional maps in a variety of applications, in particular by enabling the transfer of high‐frequency functions without changing the representation size or complexity.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.