3 years ago

A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique

A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique
Stefan G. Haass, Yaroslav E. Romanyuk, Christian Andres, Deepak Varandani, Manoj Vishwakarma, Ayodhya N. Tiwari, Bodh R. Mehta
A direct mapping of photovoltage in a complete Mo/CZTSSe/CdS/ZnO/Al:ZnO solar cell device is carried out using Kelvin probe force microscopic (KPFM) measurements in surface and junction modes. Four cells having different values of open circuit voltage (VOC) have been studied, and nanoscale variation of photovoltage have been obtained from the difference of surface potential (SP) images in the two modes. The maps exhibit a higher photovoltage at grain boundaries in general. Observed SP image of pristine CZTSe layer reveals downward band bending resulting in reduction of carrier recombination, and thus, lower Jdark at grain boundaries (GB). The observed downward band bending resulting in low Jdark at GB in CZTSe layer is used to explain the increase in photovoltage (VOC) at the GB. KPFM measurements of CZTSe and CZTSe/CdS layers show that the surface potential of CZTSe layer and its variation can be affected by CdS deposition and further device processing, in addition to surface adsorption and contamination effects. The photovoltage mapping obtained from Kelvin probe force microscopic measurements on the final device without any interfering effects, is an important advantage of the present method.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.