3 years ago

Asynchronous parametric excitation, total instability and its occurrence in engineering structures

Peter Hagedorn, Artem Karev, Daniel Hochlenert
In mechanical engineering systems self-excited and parametrically excited vibrations are in general unwanted and sometimes dangerous. There are many systems exhibiting such vibrations which up to this day cannot be completely avoided, such as brake squeal, the galloping vibrations of overhead transmission lines, the ground resonance in helicopters and others. In general, problems of parametric excitation are studied for the case in which all the time-periodic terms are synchronous. In this case the stability behavior is well understood. However, if the time-periodic terms are asynchronous, an “atypical” behavior may occur: The linear system may then be unstable for all frequencies of the parametric excitation, and not only in the neighborhood of certain discrete frequencies (total instability). Until recently it was believed that such “atypical” behavior would not appear in mechanical systems. The present paper discusses some recent insights and results obtained for linear and nonlinear systems with asynchronous parametric excitation. The method of normal forms is used to prove total instability and to calculate limit cycles of a generalized nonlinear system. Further, a mechanical example of a minimal disk brake model featuring such out of phase parametric excitation is presented. The example outlines the importance of the observed effects from the engineering point of view, since similar terms are also expected in the equations of motion of disk brakes with disks with ventilation channels and most likely also in other physical systems.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.