3 years ago

Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries

J. Xu, Y. Jia, S. Yin, J. Li, H. Yu, H. Zhao, B. Liu


Two governing factors that influence the electrochemical behaviors of lithium-ion batteries (LIBs), namely, state of charge (SOC) and state of health (SOH), are constantly interchanged, thus hindering the understanding of the mechanical integrity of LIBs. This study investigates the electrochemical failure of LIBs with various SOHs and SOCs subjected to abusive mechanical loading. Comprehensive experiments on LiNi0.8CoO15Al0.05O2 (NCA) LIB show that SOH reduction leads to structural stiffness and that the change trend varies with SOC value. Low SOH, however, may mitigate this phenomenon. Electrochemical failure strain at short circuit has no relationship with SOC or SOH, whereas failure stress increases with the increase of SOC value. Experiments on three types of batteries, namely, NCA, LiCoO2 (LCO), and LiFePO4 (LFP) batteries, indicate that their mechanical behaviors share similar SOH-dependency properties. SOH also significantly influences failure stress, temperature increase, and stiffness, whereas its effect on failure strain is minimal. Results may provide valuable insights for the fundamental understanding of the electrochemically and mechanically coupled integrity of LIBs and establish a solid foundation for LIB crash-safety design in electric vehicles.

Publisher URL: https://link.springer.com/article/10.1007/s11340-018-0380-9

DOI: 10.1007/s11340-018-0380-9

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.