3 years ago

Neutron Diffraction Residual Strain Measurements of Molybdenum Carbide-Based Solid Oxide Fuel Cell Anode Layers with Metal Oxides on Hastelloy X

S.P. Katikaneni, N.H. Faisal, S.Y. Zhang, M.F.A. Goosen, A.K. Prathuru, R. Ahmed

Abstract

Thermal spray deposition processes impart residual stress in layered Solid Oxide Fuel Cells (SOFC) materials and hence influence the durability and efficiency of the cell. The current study which is the first of its kind in published literature, reports results on using a neutron diffraction technique, to non-destructively evaluate the through thickness strain measurement in plasma sprayed (as-sprayed) anode layer coatings on a Hastelloy®X substrate. Through thickness neutron diffraction residual strain measurements were done on three different anode coatings (Mo-Mo2C/Al2O3, Mo-Mo2C/ZrO2 and Mo-Mo2C/TiO2) using the vertical scan mode. The three anode coatings (developed through optimised process parameters) investigated had porosities as high as 20%, with thicknesses between 200 μm to 300 μm deposited on 4.76 mm thick Hastelloy®X substrate discs of 20 mm diameter. The results showed that while the through thickness residual strain in all three anodes was dissimilar for the investigated crystallographic planes, on average it was tensile. Other measurements include X-ray diffraction, nanoindentation and SEM microscopy. As the anode layer microstructures are complex (includes bi-layer alternate phases), non-destructive characterisation of residual strain, e.g. using neutron diffraction, provides a useful measure of through thickness strain profile without altering the stress field in the SOFC electrode assembly.

Publisher URL: https://link.springer.com/article/10.1007/s11340-017-0298-7

DOI: 10.1007/s11340-017-0298-7

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.