3 years ago

Disappearance of the metal-insulator transition in iridate pyrochlores on approaching the ideal R2Ir2O7 stoichiometry

Arthur W. Sleight, Arthur P. Ramirez
Recently, rare earth iridates, R2Ir2O7, with the pyrochlore structure have been intensively investigated due to their promise as either topological Mott insulators or Weyl semimetals. Single crystals of such pyrochlores with R = Nd, Sm, Eu, and Dy were prepared hydrothermally in sealed gold tubes at 975 K and show significantly higher electrical resistivities than previously reported for either crystals or polycrystalline samples. Furthermore, none of the present crystals exhibit the metal-insulator transition found for some samples of these phases. Lower resistivities are ascribed to lack of control of x and y in R2-x Ir2O7-y in other more commonly used synthesis methods, yielding uncertainty in the Ir oxidation state. We also report resistivity of R2Ru2O7 crystals for R = Yb, Gd, Eu, and Nd, prepared in the same manner. These results suggest that the observed charge transport in hydrothermally grown iridate crystals is that of essentially stoichiometric phases and is consistent a with the existence of Weyl nodes.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.