3 years ago

Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing

Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing
Kaitlin Keene, Robert Enick, Justin Harris, Gianfranco Rodriguez, Keith P. Johnston, Summer Jiries, Shehab Alzobaidi, Robert Perry, Eric Beckman, Chang Da, Jason Lee
The design of surfactants for CO2/oil emulsions has been elusive given the low CO2-oil interfacial tension, and consequently, low driving force for surfactant adsorption. Our hypothesis is that waterless, high pressure CO2/oil emulsions can be stabilized by hydrophobic comb polymer surfactants that adsorb at the interface and sterically stabilize the CO2 droplets. The emulsions were formed by mixing with an impeller or by co-injecting CO2 and oil through a beadpack (CO2 volume fractions (ϕ) of 0.50–0.90). Emulsions were generated with comb polymer surfactants with a polydimethylsiloxane (PDMS) backbone and pendant linear alkyl chains. The C30 alkyl chains are CO2-insoluble but oil soluble (oleophilic), whereas PDMS with more than 50 repeat units is CO2-philic but only partially oleophilic. The adsorbed surfactants sterically stabilized CO2 droplets against Ostwald ripening and coalescence. The optimum surfactant adsorption was obtained with a PDMS degree of polymerization of ∼88 and seven C30 side chains. The emulsion apparent viscosity reached 18 cP at a ϕ of 0.70, several orders of magnitude higher than the viscosity of pure CO2, with CO2 droplets in the 10–150 µm range. These environmentally benign waterless emulsions are of interest for hydraulic fracturing, especially in water-sensitive formations.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.