3 years ago

In vivo NMR investigations of glyphosate influences on plant metabolism

In vivo NMR investigations of glyphosate influences on plant metabolism
Xia Ge, D. André d'Avignon
Glyphosate is the world’s most widely used herbicide; popular due to its relative low cost, low toxicity, and high efficacy in controlling most common weed species. Genetic engineering of crop seeds to be glyphosate-tolerant has facilitated the modern global agricultural practice whereby both weeds and crops are treated with herbicide, while only the crops survive. However, due to extreme selective pressure, glyphosate-resistant (GR) weed species are now found with increasing frequency in nature, threatening the dominant weed management system used in large-scale agriculture across much of the globe. In vivo NMR studies of plants have facilitated the discovery and understanding of the glyphosate-resistance mechanism of the multi-continent, highly invasive weed species, GR horseweed Conyza canadensis (L.) Cronq. and GR ryegrass (Lolium spp.). This study exemplifies how in vivo NMR spectroscopy can be used to better understandherbicide-associated metabolic alterations observed in living plants, which poses a significant threat to modern agriculture as it is currently practiced.
You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.