3 years ago

Resting-state functional connectivity of anterior and posterior hippocampus in posttraumatic stress disorder

Posttraumatic stress disorder (PTSD) has been associated with altered resting-state functional connectivity (rs-FC) of several brain regions within the salience (SN) and default-mode (DMN) networks, including the hippocampus. However, most rs-FC studies have not focused primarily on the hippocampus, nor have they appreciated its structural heterogeneity, despite clear evidence for a dissociation between posterior and anterior hippocampal connectivity. Here, we examine rs-FC of anterior and posterior hippocampus with key regions in the SN (amygdala, insula, and dorsal anterior cingulate cortex/pre-supplementary motor area) and DMN (ventromedial prefrontal cortex, posterior cingulate cortex, and precuneus) previously implicated in PTSD, using a seed-based approach. Resting-state magnetic resonance images were obtained from 48 PTSD patients and 34 trauma-exposed healthy participants (TEHC). Results indicated no group differences when examining the hippocampus as a whole. However, examining the anterior and posterior hippocampus revealed a loss of anterior to posterior connectivity differentiation in PTSD patients. The PTSD group also demonstrated lower negative connectivity of the posterior hippocampus-precuneus pathway compared with the TEHC group. Finally, as differences in anterior and posterior hippocampus connectivity have been also related to age, we performed a secondary analysis exploring the association between age and posterior- and anterior-hippocampus connectivity in both groups. Results showed that among PTSD patients, increased age had the effect of normalizing posterior hippocampus-precuneus and hippocampus-posterior cingulate cortex connectivity, whereas no such effect was noted for the control group. These findings highlight the need for PTSD connectivity research to consider sub-parts of the hippocampus and to account for age-related connectivity differences.

Publisher URL: www.sciencedirect.com/science

DOI: S0022395617302613

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.