3 years ago

Realization of Red Plasmon Shifts up to ∼900 nm by AgPd-Tipping Elongated Au Nanocrystals

Realization of Red Plasmon Shifts up to ∼900 nm by AgPd-Tipping Elongated Au Nanocrystals
Jianli Chen, Hang Kuen Yip, Zhi Yang, Ruibin Jiang, Jianfang Wang, Xingzhong Zhu, Xiao-Ming Zhu, Xiaolu Zhuo
The synthesis of metal nanostructures with plasmon wavelengths beyond ∼1000 nm is strongly desired, especially for those with small sizes. Herein we report on a AgPd-tipping process on Au nanobipyramids with the resultant red plasmon shifts reaching up to ∼900 nm. The large red plasmon shifts are ascribed to the deposition of the metal at the tips of Au nanobipyramids, which is verified by electrodynamic simulations. The method has been successfully applied to Au nanobipyramids and nanorods with different longitudinal dipolar plasmon wavelengths, demonstrating that the plasmon wavelengths of these Au nanocrystals can be extended to the entire near-infrared region. Pt can also induce the tipping on Au nanobipyramids and nanorods to realize red plasmon shifts, suggesting the generality of our approach. We have further shown that the metal-tipped Au nanobipyramids possess a high photothermal conversion efficiency and good photothermal therapy performance. This study opens up a route to the construction of Au nanostructures with plasmon resonance in a broad spectral region for plasmon-enabled technological applications.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07462

DOI: 10.1021/jacs.7b07462

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.