3 years ago

Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy

Probing the Role of the Heme Distal and Proximal Environment in Ligand Dynamics in the Signal Transducer Protein HemAT by Time-Resolved Step-Scan FTIR and Resonance Raman Spectroscopy
Eftychia Pinakoulaki, Andreas Loullis, Shigetoshi Aono, Andrea Pavlou, Hideaki Yoshimura
HemAT is a heme-containing oxygen sensor protein that controls aerotaxis. Time-resolved step-scan FTIR studies were performed on the isolated sensor domain and full-length HemAT proteins as well as on the Y70F (B-helix), L92A (E-helix), T95A (E-helix), and Y133F (G-helix) mutants to elucidate the effect of the site-specific mutations on the ligand dynamics subsequent to CO photolysis. The mutations aimed to perturb H-bonding and electrostatic interactions near the heme Fe-bound gaseous ligand (CO) and the heme proximal environment. Rebinding of CO to the heme Fe is biphasic in the sensor domain and full-length HemAT as well as in the mutants, with the exception of the Y133F mutant protein. The monophasic rebinding of CO in Y133F suggests that in the absence of the H-bond between Y133 and the heme proximal H123 residue the ligand rebinding process is significantly affected. The role of the proximal environment is also probed by resonance Raman photodissociation experiments, in which the Fe–His mode of the photoproduct of sensor domain HemAT-CO is detected at a frequency higher than that of the deoxy form in the difference resonance Raman spectra. The role of the conformational changes of Y133 (G-helix) and the role of the distal L92 and T95 residues (E-helix) in regulating ligand dynamics in the heme pocket are discussed.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00558

DOI: 10.1021/acs.biochem.7b00558

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.