3 years ago

Reusable Silicon-Based Surface-Enhanced Raman Scattering Ratiometric Aptasensor with High Sensitivity, Specificity, and Reproducibility

Reusable Silicon-Based Surface-Enhanced Raman Scattering Ratiometric Aptasensor with High Sensitivity, Specificity, and Reproducibility
Yuanyuan Su, Yao He, Houyu Wang, Na Chen, Huayi Shi
Rapid, sensitive, and accurate detection of adenosine triphosphate (ATP), the primary energy molecule, is critical for the elucidation of its unique roles in cell signaling and many cellular reactions. Up to date, a major challenge is still remaining for fabricating surface-enhanced Raman scattering (SERS) aptamer sensors (aptasensors) suitable for accurate and reliable quantification of ATP. Herein, we develop the ratiometric silicon SERS aptasensor for ATP detection, which is made of uniform silver nanoparticles (Ag NPs)-modified silicon wafer (Ag NPs@Si), followed by the functionalization with double-stranded DNA (dsDNA I). The dsDNA I is formed by the aptamer and its complementary DNA (cDNA), which contains two independent segments (e.g., 5′-Cy3-labeled DNA-C1, 3′-ROX-labeled DNA-C2). In the presence of ATP, ROX–DNA-C2 is dissociated from dsDNA I due to the formation of aptamer/ATP complex, leading to the attenuation of ROX signals, and meanwhile, Cy3 signals remain constant ascribed to the formation of dsDNA II caused by the supplementation of aptamer. As a result, ratiometric signals of the ratio of ROX intensity to Cy3 intensity (IROX/ICy3) can be achieved. Of particular significance, the developed ATP aptasensor features excellent reproducibility [e.g., the relative standard deviation (RSD) is less than ∼4%, comparable or superior to that of previously reported aptasensors], ultrahigh sensitivity [e.g., the detection of limit (LOD) reaches 9.12 pM, lower than that of other reported ATP SERS aptasensors], as well as good recyclability (e.g., ∼9.3% of RSD values of ratiometric signals within three cycles).

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01881

DOI: 10.1021/acs.analchem.7b01881

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.