5 years ago

Highly Elastic and Tough Interpenetrating Polymer Network-Structured Hybrid Hydrogels for Cyclic Mechanical Loading-Enhanced Tissue Engineering

Highly Elastic and Tough Interpenetrating Polymer Network-Structured Hybrid Hydrogels for Cyclic Mechanical Loading-Enhanced Tissue Engineering
Robyn Marks, Tae-Hee Kim, Jung-Youn Shin, Mitchell Hopkins, Oju Jeon, Eben Alsberg, Hong-Hyun Park
Although hydrogels are extensively investigated as biomaterials due to their ability to mimic cellular microenvironments, they are often limited by their poor physical properties in response to mechanical loads, including weak gel strength, brittleness, and permanent deformation. Recently, interpenetrating polymer network (IPN) hydrogels have gained substantial attention for their use in investigating changes in encapsulated cell behaviors under mechanical stimulation. However, despite recent success in developing highly elastic IPN-structured hydrogels, it remains a great technical challenge to endow them with biocompatibility and biodegradability due to use of toxic chemicals, nonbiodegradable prepolymers, and harsh reaction conditions. In this study, we report on the synthesis and formation of highly elastic and tough IPN-structured hydrogels based on alginate and gelatin, which are biocompatible and biodegradable. Mechanical stimulation enhanced the proliferation and osteogenic differentiation of encapsulated human mesenchymal stem cells in the IPN-structured hydrogels. These new biocompatible, biodegradable, and tough elastomeric hydrogels provide an exciting platform for studying stem cell behaviors such as proliferation and differentiation under mechanical stimulation and may broaden the applications of hydrogels in the fields of tissue engineering and regenerative medicine.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02995

DOI: 10.1021/acs.chemmater.7b02995

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.