3 years ago

Mechanistic Insight into Nanoarchitected Ag/Pr6O11 Catalysts for Efficient CO Oxidation

Mechanistic Insight into Nanoarchitected Ag/Pr6O11 Catalysts for Efficient CO Oxidation
Weitao Zheng, Wei Zhang, Jin-Gyu Kim, Dong Wang, Nicholas E. Drewett, Shiyang Cheng, Seung Jo Yoo, Cai Zhang, Xinxin Zhang, Xiyang Wang
Ag/Pr6O11 catalysts supported by either Pr6O11 nanorods (Pr6O11-NRs) or nanoparticles (Pr6O11-NPs) were prepared by conventional incipient wetness impregnation. The nanocomposite of Ag/Pr6O11-NRs demonstrated a higher catalytic activity for CO oxidation than Ag/Pr6O11-NPs at lower temperatures. This improved performance may be ascribed to the mesoporous features and resultant oxygen vacancies of the Pr6O11 nanorods support, as well as the large surface area and homogeneous loading of Ag species. As a result, 98.7 and 100% CO conversions were achieved at 210 and 240 °C for Ag/Pr6O11-NRs, while Ag/Pr6O11-NPs require a temperature of 320 °C to obtain the 100% CO conversion rate. These findings reveal that Pr6O11-NRs is the preferable support, comparative to Pr6O11-NPs, for Ag/Pr6O11 catalysts, for CO oxidation.

Publisher URL: http://dx.doi.org/10.1021/acs.iecr.7b02530

DOI: 10.1021/acs.iecr.7b02530

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.