5 years ago

Creating intraparticle mesopores inside ZSM-5 nanocrystals under OSDA-free conditions and achievement of high activity in LDPE degradation

Creating intraparticle mesopores inside ZSM-5 nanocrystals under OSDA-free conditions and achievement of high activity in LDPE degradation
This work presents a simple method for creating intraparticle mesopores inside ZSM-5 nanocrystals using a polymer/seed co-assisted approach under OSDA (organic structural directing agent)-free conditions. The effects of anionic polyacrylamide (PAM), and some derived synthesis parameters, including PAM concentration, seed concentration, sodium hydroxide concentration, and crystallization temperature on the textural properties of the final product, and especially on the intraparticle mesopore formation mechanism were systematically investigated by XRD, N2-adsorption, UV-Raman, SEM, TEM, solid state 27Al MAS NMR, and 29Si MAS NMR analyses. The proposed mechanism includes (1) Introducing a seed solution to guarantee sufficient nucleation; (2) PAM acceleration of phase separation by “immobilizing” the generated ultrafine MFI structure building units, and so playing the role of a flocculating agent in the induction period; (3) Creation of intraparticle and interparticle mesopores after removal of PAM species by calcination, which can be pre-designed by simply optimizing the synthesis parameters. The synthesis involves severe conditions and as a consequence the resulting nano-sized ZSM-5 zeolite simultaneously possesses very high crystallinity and considerable intraparticle mesoporosity. Because of the existence of intraparticle mesopores, the produced ZSM-5 nanocrystal agglomerates exhibit excellent catalytic performance in the LDPE degradation reaction. The temperature ascribed to the maximum degradation rate was found to be 22 K lower than that measured for the production of common nano-sized ZSM-5 aggregates that do not exhibit intraparticle mesoporosity.

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117306236

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.