5 years ago

Stability of Au–Pd Core–Shell Nanoparticles

Stability of Au–Pd Core–Shell Nanoparticles
Sergio Mejía-Rosales, Carlos Fernández-Navarro
The stability of Au–Pd alloys with sizes close to 3 nm and icosahedral, decahedral, and truncated octahedral geometries with AucorePdshell and PdcoreAushell elemental distributions have been studied using canonical molecular dynamics simulations. The analysis of excess energy show that the PdcoreAushell ordering is more stable than the AucorePdshell for particles of this size, while the analysis of the order parameter Q6 revealed that some of the particles with AucorePdshell ordering exhibited geometric and structural changes previous to melting of the particles. Analysis of the local density of the species revealed that these changes are due to diffusion of Pd atoms into the inner core of the particles. The geometry and structure of all of the particles with PdcoreAushell were preserved until just before the solid–liquid transition, as well as showing a lower melting temperature than the AucorePdshell particles.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b04564

DOI: 10.1021/acs.jpcc.7b04564

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.