5 years ago

π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon

π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon
Aleš Štefančič, Melita Menelaou, Ryotaro Arita, Denis Arčon, Takashi Koretsune, A. Johan C. Buurma, Nayuta Takemori, Hiroyuki Tamura, Kosmas Prassides, Matthew J. Rosseinsky, Yusuke Nomura, Gyöngyi Klupp, Yasuhiro Takabayashi
Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•− radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02; J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.

Publisher URL: http://dx.doi.org/10.1038/nchem.2764

DOI: 10.1038/nchem.2764

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.