5 years ago

Impact of the Distributions of Core Size and Grafting Density on the Self-Assembly of Polymer Grafted Nanoparticles

Impact of the Distributions of Core Size and Grafting Density on the Self-Assembly of Polymer Grafted Nanoparticles
Sanat K. Kumar, Rajdip Bandyopadhyaya, Yang Jiao, Pinar Akcora, Nirmalya Bachhar, Makoto Asai
It is now well-accepted that hydrophilic nanoparticles (NPs) lightly grafted with polymer chains self-assemble into a variety of superstructures when placed in a hydrophobic homopolymer matrix or in a small molecule solvent. Currently, it is thought that a given NP sample should only assemble into one kind of superstructure depending on the relative balance between favorable NP core–core attractions and steric repulsion between grafted polymer chains. Surprisingly, we find that each sample shows the simultaneous formation of a variety of NP-assemblies, e.g., well-dispersed particles, strings, and aggregates. We show through the generalization of a simple geometric model that accounting for the distributions of the NP core size and the number of grafted chains on each NP (which is especially important at low coverages) allows us to quantitatively model the aggregate shape distribution. We conclude that, in contrast to molecular surfactants with well-defined chemistries, the self-assembly of these NP analogues is dominated by such fluctuation effects.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b01093

DOI: 10.1021/acs.macromol.7b01093

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.