3 years ago

The interactions of algae-bacteria symbiotic system and its effects on nutrients removal from synthetic wastewater

The ability of Chlorella vulgaris-Bacillus licheniformis and Microcystis aeruginosa-Bacillus licheniformis consortiums to eliminate total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and soluble chemical oxygen demand (sCOD) from synthetic wastewater was studied. The highest values of dry cell weight, chlorophyll-a, and chlorophyll metabolism related genes/bacterial rRNA gene copies were obtained in the Chlorella vulgaris-Bacillus licheniformis system at Chlorella vulgaris and Bacillus licheniformis ratio of 1:3. On the 10th day, the Chlorella vulgaris-Bacillus licheniformis system at this ratio removed 86.55%, 80.28% and 88.95% of sCOD, TDP and TDN, respectively. But, the Microcystis aeruginosa-Bacillus licheniformis system at this ratio only removed 65.62%, 70.82%, and 21.56% of sCOD, TDP and TDN, respectively. Chlorella vulgaris and Bacillus licheniformis could coexist as an algae-bacteria consortia and quorum sensing substances (autoinducing peptides and bis (3′-5′) diguanylic acid) concentrations were measured. Finally, the interactions and communication patterns between Chlorella vulgaris and Bacillus licheniformis were depicted.

Publisher URL: www.sciencedirect.com/science

DOI: S0960852417316395

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.