4 years ago

Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves

Salicylideneanilines-Based Covalent Organic Frameworks as Chemoselective Molecular Sieves
Wei Tang, Zhongxin Chen, Xing Li, Zixuan Chen, Qiang Gao, Kian Ping Loh, Bingbing Tian, Cuibo Liu, Guo-Hong Ning
Porous materials such as covalent organic frameworks (COFs) are good candidates for molecular sieves due to the chemical diversity of their building blocks, which allows fine-tuning of their chemical and physical properties by design. Tailored synthesis of inherently functional building blocks can generate framework materials with chemoresponsivity, leading to controllable functionalities such as switchable sorption and separation. Herein, we demonstrate a chemoselective, salicylideneanilines-based COF (SA-COF), which undergoes solvent-triggered tautomeric switching. This is unique compared to solid-state salicylideneanilines’ counterpart, which typically requires high energy input such as photo or thermal activation to trigger the enol–keto tautomerisim and cistrans isomerization. Accompanying the tautomerization, the ionic properties of the COF can be tuned reversibly, thus forming the basis of size-exclusion, selective ionic binding or chemoseparation in SA-COF demonstrated in this work.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b02696

DOI: 10.1021/jacs.7b02696

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.