# Document Listing on Repetitive Collections with Guaranteed Performance.

We consider document listing on string collections, that is, finding in which strings a given pattern appears. In particular, we focus on repetitive collections: a collection of size $N$ over alphabet $[1,\sigma]$ is composed of $D$ copies of a string of size $n$, and $s$ single-character or block edits are applied on ranges of copies. We introduce the first document listing index with size $\tilde{O}(n+s)$, precisely $O((n\log\sigma+s\log^2 N)\log D)$ bits, and with useful worst-case time guarantees: Given a pattern of length $m$, the index reports the $\ndoc>0$ strings where it appears in time $O(m\log^{1+\epsilon} N \cdot \ndoc)$, for any constant $\epsilon>0$ (and tells in time $O(m\log N)$ if $\ndoc=0$). Our technique is to augment a range data structure that is commonly used on grammar-based indexes, so that instead of retrieving all the pattern occurrences, it computes useful summaries on them. We show that the idea has independent interest: we introduce the first grammar-based index that, on a text $T[1,N]$ with a grammar of size $r$, uses $O(r\log N)$ bits and counts the number of occurrences of a pattern $P[1,m]$ in time $O(m^2 + m\log^{2+\epsilon} r)$, for any constant $\epsilon>0$. We also give the first index using $O(z\log(N/z)\log N)$ bits, where $T$ is parsed by Lempel-Ziv into $z$ phrases, counting occurrences in time $O(m\log^{2+\epsilon} N)$.

Publisher URL: http://arxiv.org/abs/1707.06374

DOI: arXiv:1707.06374v2

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

Researcher displays publicly available abstracts and doesnâ€™t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.