3 years ago

Selective and Real-Time Detection of Nitric Oxide by a Two-Photon Fluorescent Probe in Live Cells and Tissue Slices

Selective and Real-Time Detection of Nitric Oxide by a Two-Photon Fluorescent Probe in Live Cells and Tissue Slices
Chun-Guang Dai, Hong-Ping Zhou, Ying-Long Fu, Ji-Long Wang, Qin-Hua Song
Nitric oxide (NO) is an important signaling molecule involved in many physiological and pathological processes. To understand these NO-mediated processes, it is a key to develop rapid and specific detection methods for NO. In the past 2 decades, numerous excellent fluorescent probes for NO have been designed; however, it still remains limitations such as slow response, low selectivity, and short excitation wavelength (<600 nm). In this Article, a two-photon fluorescent probe, NO-QA5, has been developed with 3-dimethylaminophenyl linking at the 6-position of 5-aminoquinoline as both the active site and prefluorophore for detection of NO. The nonfluorescent NO-QA5 can fast react with NO via a diazonium intermediate to generate two azoic regioisomers, one of which exhibits intramolecular charge transfer (ICT) emission, and two-photon absorption behavior (δΦ = 57 GM), giving a turn-on fluorescence rapid response. The sensing reaction is pH-insensitive in the range of 6–11 and highly selective and well sensitive (LOD = 15 nM), possible undergoing the same intermediate diazonium with the reaction under diazotization condition (NaNO2/HCl). Also, as a nitrite fluorescent probe NO-QA5 exhibits highly sensitive (LOD = 7 nM). Therefore, NO-QA5 can serve as a dual functional fluorescent probe for NO and NO2. Furthermore, NO-QA5 as a specific imaging agent has been demonstrated by achieving both exogenous and endogenous detections of NO in living cells under both one- and two-photon excitation and high resolution in tissue slices under two-photon excitation.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b02680

DOI: 10.1021/acs.analchem.7b02680

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.