5 years ago

Charge Transport in Molecular Materials: An Assessment of Computational Methods

Charge Transport in Molecular Materials: An Assessment of Computational Methods
Karsten Reuter, Harald Oberhofer, Jochen Blumberger
The booming field of molecular electronics has fostered a surge of computational research on electronic properties of organic molecular solids. In particular, with respect to a microscopic understanding of transport and loss mechanisms, theoretical studies assume an ever-increasing role. Owing to the tremendous diversity of organic molecular materials, a great number of computational methods have been put forward to suit every possible charge transport regime, material, and need for accuracy. With this review article we aim at providing a compendium of the available methods, their theoretical foundations, and their ranges of validity. We illustrate these through applications found in the literature. The focus is on methods available for organic molecular crystals, but mention is made wherever techniques are suitable for use in other related materials such as disordered or polymeric systems.

Publisher URL: http://dx.doi.org/10.1021/acs.chemrev.7b00086

DOI: 10.1021/acs.chemrev.7b00086

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.