5 years ago

Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1 [Biochemistry]

Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1 [Biochemistry]
Miriam Kutsch, Christian Herrmann, Christine Dovengerds, Gerrit J. K. Praefcke, Annika Hohendahl, Semra Ince, Astrid C. Schauss, Aurelien Roux, Michael Sturzl, Anke Y. Zienert, Julia M. Dargazanli, Saskia D. Gunther, Ailisa Blum, Nikolay Kladt, Sergii Shydlovskyi

Dynamin-like proteins (DLPs) mediate various membrane fusion and fission processes within the cell, which often require the polymerization of DLPs. An IFN-inducible family of DLPs, the guanylate-binding proteins (GBPs), is involved in antimicrobial and antiviral responses within the cell. Human guanylate-binding protein 1 (hGBP1), the founding member of GBPs, is also engaged in the regulation of cell adhesion and migration. Here, we show how the GTPase cycle of farnesylated hGBP1 (hGBP1F) regulates its self-assembly and membrane interaction. Using vesicles of various sizes as a lipid bilayer model, we show GTP-dependent membrane binding of hGBP1F. In addition, we demonstrate nucleotide-dependent tethering ability of hGBP1F. Furthermore, we report nucleotide-dependent polymerization of hGBP1F, which competes with membrane binding of the protein. Our results show that hGBP1F acts as a nucleotide-controlled molecular switch by modulating the accessibility of its farnesyl moiety, which does not require any supportive proteins.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.