5 years ago

Brønsted acid catalyzed enantioselective pericyclic reactions

Brønsted acid catalyzed enantioselective pericyclic reactions
Pericyclic reactions can be challenging processes to render asymmetric, due to the concerted and non-polar nature of the transition states. Several examples have been reported in which a suitable catalyst binds to a heteroatom-containing substituent in the substrate and accelerates the reaction rate. The requirement of coordinating functionalized substrates has limited the generality of such asymmetric transformations. Multifunctional Brønsted acids are promising catalysts that represent a new paradigm in asymmetric pericyclic reactions. These chiral catalysts rely on multiple non-covalent interactions in the transition state for asymmetric induction, which has been utilized to activate more general substrate classes. In this review, we will cover recent advances in Brønsted acid catalyzed pericyclic reactions and discuss the impact of catalyst design on the expansion of substrate scope for highly enantioselective processes.

Publisher URL: www.sciencedirect.com/science

DOI: S0040402017302077

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.