3 years ago

18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer's disease

18F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer's disease
Until now, hypometabolic patterns and their correlations with neuropsychological performance have not been assessed as a function of the various presentations of sporadic early-onset Alzheimer's disease (EOAD). Here, we processed and analyzed the patients' metabolic maps at the vertex and voxel levels by using a nonparametric, permutation method that also regressed out the effects of cortical thickness and gray matter volume, respectively. The hypometabolism patterns in several areas of the brain were significantly correlated with the clinical manifestations. These areas included the paralimbic regions for typical presentations of sporadic EOAD. For atypical presentations, the hypometabolic regions included Broca's and Wernicke's areas and the pulvinar in language forms, bilateral primary and higher processing visual regions (with right predominance) in visuospatial forms, and the bilateral prefrontal cortex in executive forms. Similar hypometabolism patterns were also observed in a correlation analysis of the 18F-FDG PET data versus domain-specific, neuropsychological test scores. These heterogeneities might reflect different underlying pathophysiological processes in particular clinical presentations of sporadic EOAD and should be taken into account in future longitudinal and therapeutic studies.

Publisher URL: www.sciencedirect.com/science

DOI: S0197458017302646

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.